Spatial–Temporal Analysis of Temperature Using Smoothing Spline ANOVA

نویسندگان

  • ZHEN LUO
  • GRACE WAHBA
  • DONALD R. JOHNSON
چکیده

A new method, smoothing spline ANOVA, for combining station records of surface air temperature to get the estimates of regional averages as well as gridpoint values is proposed. This method is closely related to the optimal interpolation (also optimal averaging) method. It may be viewed as a generalization of these methods from spatial interpolation methods to a method interpolating in both spatial and temporal directions. The connection of this method to the commonly used anomaly approach is discussed in the context of correcting biases resulting from incomplete sampling. A main strength of this new method is its ability to borrow information across both space and time just like optimal interpolation does across space. This increases not only the accuracy of estimates but also the ability to correct various biases resulting from incomplete sampling. Some of these biases are ignored by the anomaly approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backfitting in Smoothing Spline Anova

A computational scheme for fitting smoothing spline ANOVA models to large data sets with a (near) tensor product design is proposed. Such data sets are common in spatial-temporal analyses. The proposed scheme uses the backfitting algorithm to take advantage of the tensor product design to save both computational memory and time. Several ways to further speed up the backfitting algorithm, such a...

متن کامل

Using recursive algorithms for the efficient identification of smoothing spline ANOVA models

In this paper we present a unified discussion of different approaches to the identification of smoothing spline analysis of variance (ANOVA) models: (i) the “classical” approach (in the line of Wahba in Spline Models for Observational Data, 1990; Gu in Smoothing Spline ANOVA Models, 2002; Storlie et al. in Stat. Sin., 2011) and (ii) the State-Dependent Regression (SDR) approach of Young in Nonl...

متن کامل

Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example

Nonparametric regression models do not require the specification of the functional form between the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in comparison to their parametric counterparts, is small. We propose a goodness-of-fit test for nonparametric regression models with linear smoother form. In particular, we apply this testing framework to s...

متن کامل

Smoothing Spline ANOVA for Variable Screening

Smoothing Spline ANOVA is a statistical modeling algorithm based on a function decomposition similar to the classical analysis of variance (ANOVA) decomposition and the associated notions of main effect and interaction. It represents a suitable screening technique for detecting important variables (Variable Screening) in a given dataset. We present the mathematical background together with poss...

متن کامل

Odds ratio estimation in Bernoulli smoothing spline analysis-of- variance models

Wahba and co-workers introduced the smoothing spline analysis-of-variance (SS ANOVA) method for data from exponential families. In this paper, we estimate the odds ratios based on an SS ANOVA model for binary data and construct Bayesian confidence intervals. We give a calculation using a real data set from the Wisconsin epidemiological study of diabetic retinopathy. We conduct simulations to ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998